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Numerically Induced Phase Shift in the KdV Soliton
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When using a finite difference scheme to study the motion of a KdVv
soliton, a shift in the position of the soliton from the exact solution is
detected. In this paper we retain the lowest order terms in the truncation
error and treat them analytically as a perturbation of the KdV equation,
It is found that perturbaticn theory can be used to determine the
numerically induced shift. 0 1993 Acadomic Piess, Ine.

INTRODUCTION

The Korteweg-de Vries (KdV) equation, given by

o+ buu, +u,,. =0, (1)
appears in many physical contexts; for example, it can be
derived from the study of water waves [7,8], or ion-
acoustic waves in plasma [13]. Special solutions to the
equation have been known for over 100 years, but it was
only 25 years ago that a method was developed for solving
the initiai value problem. This method, now known as the
inverse scattering transform (IST), was introduced by
Gardner et al,, 1967 [2]. Their discoverics were motivated
by a numerical study of the KdV equation conducted by
Zabusky and Kruskal in 1965 [14]. Zabusky and Kruskal
found that an initial profiic evolved into a train of solitary
waves cach of which behaved like a particle. During
collisions the solitary waves interacted nenlinearly and
then they emerged with their identities preserved, Zabusky
and Kruskal called these solitary waves solitons. A simple
analytical form for the Kd¥V soliton is given by

u(x, 1) =202 sech?y(x — 4y%r), (2)
where 3 is a positive real constant. It is easily seen that
this solution has amplitude 252 width 1/4, and center
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x.=4n%. In comparing the nutnerical results from the
Zabusky—Kruskal scheme with (2) we find that all of the
features of the soliton are accurate with the exception of the
soliton center. As shown in Fig. 1, at time ¢ = 20, the com-
puter generated soliton lags behind the analytic soliton by
5%. The question is then: Why is the numericai soliton
moving slower than expected? This phase shift has been
noted by several authors including Sanz-Serna [11] and
Knickerbocker [7].

In this paper we will use perturbation theory to analyti-
cally study the effects of the truncation error for the
Zabusky-Kruskal scheme on a single soliton and we will
show that this discretization crror docs account for the
numerically induced phase shift, In the next section we pre-
sent the finite difference scheme and compute the truncation
error, In the sections to follow we use singular perturbation
theory to predict the changes to the soliton including the
location of the soliton, and in the last section we make a
comparison of the numerical and theoretical results. A
byproduct of this study is a simple medification of the
Zabusky-Kruskal scheme, which can be implemented in the
same amount of time with more accurate results.

TRUNCATION ERROR FOR THE
ZABUSKY-KRUSKAL SCHEME

In 1965 Zabusky and Kruskal [147 studied the KdV
equation numerically using a periodic initial condition. The
finite difference scheme they used, hercaller referred to as
the ZK scheme, can be summarized by the equations

uljn+1)y—u(jn—1})
I, =

O(Ar?
‘ VT + O(41°)

(3)
u=u(j+ Ln)+u(j,my+u(j—1,n)

: +0(4x?)

(4)
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FIG. 1. Comparison of the numerical and theoretical positions of the
soliton peak for y=1, Ax =05, A1 =0.03125.

y _u(j+1,n)—u(j—1,n)
o 24x

(u(j+ 2,m)=2ulj+1,n)

+ 2“(1_— 13 n) _u(j_zs n)) +
24x3

+ 0(4x%) {35)

0(4x?), (6)

Uery =

where 1 =n Ar and x = j Ax. Vliegenthart [ 127 studied this
scheme and found that the linear stability condition is given
by

AT € [6dx jul +4(dx) 3]0 (M

However, implementation of the scheme can be accom-
plished by requiring

At = (4x)*/4. (8)

The leading order terms for the truncation error can be

obtained by using Taylor expansions. Denoting the numeri-

cal selution by &, and the actual solution by u, we can
rewrite the numerical scheme as

. uwlt+Ary—ult— Ar) r
= = -4 9
u.! 2A[ ui‘+6 t u"i‘ ( )
ﬁ_u(x+Ax)+u(x)+u(x—Ax)
B 3
1
zu+—3—Ax Uy (10)
p _ulx+ Ax) —u(x — 4x)
T 24x
1 2
R Ut AXT (11)

6

(u(x +24x) — 2ul(x + 4x)
_ + 2u(x— Ax) —u(x — 24x)
xxx 2Ax3

(12)

2
R Hernt Z Ax Uoxxxx-

Thus, numerically one is solving

O=it, + 6@l + i,

2w+ bun + U+ E(u), (13}

where the truncation error for the equation is defined as

Flu)= é At u,,

+ sz {Zuxuxx + uuxxx + %HIXXIX }' (14)

Therefore, by using the ZK scheme, we are actually solving
to leading order a perturbed KdV equation

H! + 6““\.‘ + uxxx
= _1 4.2
=—zAt"u,,

- sz{zux HXX + uuxxx + %MXIX‘XI}' (15)

If we define a small parameter £ = Ax?, then we find from
the stability condition (8) that 4s* ~ &*/4. Therefore, the
first term in the perturbation is of much higher order in ¢
than the other terms. So, we can study the perturbed KdV
equation

U+ Ouu +

= _E{zuxuxx+uu.rxx+ iuxxxxx}: (16)
in order to determine if the discrepancy in the soliton
position in Fig. 1 can be predicted.

ANALYSIS OF PERTURBED KDY EQUATIONS

In the last section we obtained a perturbed KdV equa-
tion, which contains the leading order corrections due to the
truncation errar present in the ZK scheme, We now turn to
the perturbation theory developed for the KdV equation
and see if we can account for the observed shift in the soliton
position.

Since the mid 1970s several papers were produced to
describe the effects of perturbations on soliton solutions of
integrable nonlinear evolution equations [3-6, 9]. Kaup
[5] had suggested the use of IST to study singular perturba-
tions of these equations. Later Kaup and Newell (KN [6]
had applied this method to the KdV equation, as well as
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other perturbed equations. At the same time Karpman and
Maslov (KM) had also used similar methods to study per-
turbations of the KdV equation [47. It was found from
these studies that the effects of small perturbations could
lead to a change in the shape and position, or phase shift, of
the initial soliton, as well as the formation of a secondary
structure behind the soliton.

There are some discrepancies between these two
approaches [3]. Also, further analysis of such numerical
schemes, using perturbation theory, should involve an
accurate determination of the first-order correction to the
solution. For these reasons, we will present a more natural
approach towards viewing the perturbation problem at
hand. We will consider a direct approach for solving the
perturbed equation [3]

w,+ 6, +u,  =eFlul, (17)

subject to the initial condition

u(x, 0} =2n2 sech’yx. (18)
This method differs from the above IST methods in that we
will study the effects of the perturbations in physical space
and not in speciral space. From these results we will be able
to predict the effects of the truncation error on the propaga-
tion of the soliton. We will find that the perturbation term
in (17} can potentially affect the shape and location of the
soliton. As we are not interested in the stability of the
scheme, we will only provide the form for the first-order
correction, reserving such a discussion for a later paper in
which several numerical schemes are nalyzed.

For smail perturbations, we expect that the solution will
remain close to the soliton solution for some time. There-
fore, the solution we seek will be a solitary wave with a
siowly changing shape and location plus a correction. In
order to accomplish this, we will assume an asymptotic
expansion of the form

w(x, 1)y =uo(x, t)+eu,(x, 1}+ -, (19)
where we take
2 2 1
uglx, 1y =217 sech™n x—= Xp— X ). (20)

We will also assume that the soliton parameters are slowly
varying. In order to accomplish this we define the two time
scales, T =t and t = &1, and we allow #, x4, and x, to depend
only on the slow scale 1.

Introducing the expansion (19) and the two time scales
into Eq. {17), we obtain an expansion of (17) in powers of
¢. Setting the ceefficients of each order of ¢ to zero, we

obtain a system of equations to be solved for u,. The iowest
order equation is the KdV equation, which will be satisfied
if

(21)

Xo, =4n".
The first-order equation then becomes
Pu = —dyn.v—2qn.dvy + 20°x v, + Fluy], (22)
where & is the linearized KdV operator
L =048, + nd u0 + 0203, (23)
and
v=sech?® ¢
p=nlx—xp/e—x))

The problem is now to invert this operator. The details of
this inversion for the general problem
Lu,=F (24)

is presented in [37. Summarizing this method, we expand

the correction %, in a complete set of basis states, {@“,
@, A7},

1 =f dif(, 1) DA(x, 1 2)

+ ) P(x 1)+ g1(D) Af(x, 1), {25}

In Appendix A we list the forms for this basis and its corre-
sponding adjoints, {®, &, 4,}, for the one soliton case.
Employing the orthogonality relations between these sets
[37], we obtain the expansion coefficients

[ g SELPY ni-ny
flA t)_jo A (26)
gi(t)=—2in [ dt' (F|,y e (27)
V]

¢
Aly==2in | ar (14,5 00
4]
~96n* [ dr [ d" (F 1@,y 0, (28)
0 0
where the inner product is defined by

S iged=] fogxde (29)
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Using the basis states for a one-soliton solution, we can
rewrite the last two terms in (25),

B=fdf+g,47, (30)
as

B= g [sech’ ¢ + ig(sech” ¢),] + %, (sech? #)g. (31)

where the new coeflicients are given by

7 sj'dx' (F |sech? ¢> (32)
0

== @ (F L+ 8- )
x sech? ¢ 4 tanh ¢ . (33)

We note that for % independent of time these coefficients
will grow in time, unless we impose the secularity conditions

{(F |sech’ ¢> =10
{F|¢$sech? ¢ +tanh ¢>=0.

(34)
(35)

Applying these conditions to Eq. (22), we obtain the slow
time dependence of the soliton parameters [3]:

no= | Pl sect g (36)
Xg = —4n° (37)

xu=gs ] Pl
x [¢sech® ¢ + tanh ¢ +tanh® $] dg.  (38)

The first equation determines the change in the soliton
amplitude (27?) and width (1/5). The second of these equa-
tions gives the leading order velocity, while the last equation
will give the correction to the velocity of the soliton.

From this analysis the correction u, is given as

(39)

” =§ dAf(3 1) DA%, 1, A).
In general, for dissipative perturbations this correction wiil
account for the development of a decaying oscillatory tail
and possibly a shelf. The height of this shelf can be deter-
mined from an analysis of ¥, near A = 0. Asymptotically, we
have that [3, 4]

1 @

u ~—f Flu,}tanh? ¢ dé.

) (40)

A careful analysis shows that the presence of this shell leads
to the tanh” ¢ term in (38) [3, 4].

PERTURBATION ANALYSIS FOR THE
ZABUSKY-KRUSKAL SCHEME

We now apply the perturbation results of the previous
section to the truncation error for the Zabuskal-Krusky
scheme. Using the perturbed KdV equation in (16), where

F[u] = - {2uxuxx + uu,{\‘,\‘ + %uxxx.tx}a (41)
we cvaluate (36) to find that
n.=0. (42)

By integrating Egs. (37) and (38) we can determine x, and

x,, respectively, to find that the soliton peak is located at
x. =4t —ten’t (43)

The correction to the soliton can also be determined by

inserting the perturbation (41) into Eq. (39). Using the
perturbation basis in Appendix A, we find that

_in, fm 072+ 20%)( — iy tanh ¢)?
D% T (% sinh(mAfy)

x [1 _ e—af;.(;}+q1):] o~ 2idin (44)
Separating the terms in the bracket under the integral and

carrying out the integration we find

-~ 7 -
u; =2n° |:— % sech? ¢ +Zsech“ ¢:|

g, [” (742 + 20%))(4 + in tanh ¢)*
15%)_, (A% + #?) sinh(zd/n)
x @ = 20— BikA 4 ) (45)
where
d=n1-5en"1¢ - fsen’, (46)

E=x—A4n*(1 — Lten?)t.

From this solution we see that the first-order correction
consists of additional corrections to the soliton amplitude.
However, such corrections are only noticible after a sul-
ficient amount of time has elapsed, since for smail times the
integral cancels the other contributions. As the soliton
evolves under the perturbation, decaying oscillations
develop.

According to Eq. (42), it would appear that the soliton



54 HERMAN AND KNICKERBOCKER

amplitude is unaffected by the numerical scheme. However,
by tracking the soliton peak in the numerical simulations, it
is noticed that there is a significant effect on the soliton
peak. Instead of obtaining a constant amplitude, it is found
that the values of the amplitude oscillate about a constant
value slightly larger that the amplitude of the initial profile,
which in this case is 25? = 2. This behavior can be accounted
for by the oscillations from the first-order correction in the
above solution. This has been confirmed by comparing the
numerical amplitude with that of uy,+en,. The order of
the shift in the amplitude is £ = Ax>.

In summary, we have found that the perturbation due to
the truncation error for the Zabusky—Kruskal scheme can
affect the amplitude and position, or velocity, of the soliton.
Also, we do not expect to find a shelf. However, we have
predicted that the most noticable effect is the shift in the
center of the soliton. Previously we had defined & = Ax* and
from Eq. (43) we obtain the new velocity

dx. 4
S qn? S pt Ax2
ar oA

b=

(47)

The first term is the velocity of the unperturbed soliton, and
the second term is the correction due to the truncation
error. Thus, we predict that the soliton is travelling at a
constant velocity and is moving slower in the numerical
scheme, as we had seen in Fig. 1.

A comment should be made about the validity of this per-
turbation analysis. Such an anaiysis is valid as long as the
corrections remain small. From the above equation for the
velocity, we see that this will be true if 52 Ax? < 1. Also, we
require su, /i, <€ 1. Since u; is proportional n*, we obtain the
same condition as before. As ! is the width of the soliton,
the condition, written in the form Ax < 5™, says that the
mesh width must be much less than the soliton width. That
is, there must be a sufficient number of points across the
soliton in order for the numerical scheme to provide a
solution, which is close to that of the KdV equation.

We now turn to the numerical results to see how well
the perturbation theory compares quantitatively to the
predictions in Eqs. (42) and (43).

COMPARISON OF ANALYTICAL AND
NUMERICAL RESULTS

The experiments were conducted using a wide range of
values for Ax, At, and ,. For all cases, the perturbation
theory was able to accurately predict the effects of the
truncation error for the Vliegenhart scheme. In a future
paper, we will give an indepth report of the details of these
comparisons for the Vliegenhart scheme as well as other
finite difference schemes,

For clarity, we present only the case n = 1, and investigate
the changes in the soliton for three values of Ax:

Ax =

%01t

(48)

A=
ool—

* q

The corresponding At’s are obtained from the stability
condition, which is given by Eq. (8). First, from Eq, (41) we
anticipate that # will remain constant in time, but we also
anticipate difficulties in measuring #, since when looking at
the soliton maximum, we are measuring the soliton plus
higher order corrections. To compound this problem, there
is also some inaccuracy in the location of the soliton peak,
due to the movement of the soliton through the spatial
mesh. Having said this, we found that the soliton maximum
remained constant to within 5% and the error decreased
quadratically with Ax, as is to be expected from the first-
order correction (45).

In Fig. 2 we display the numerical and theoretical values
for the numerical shift in the soliton position for the values
of Ax given above. In these studies we locate the soliton
center by looking for the position at which the numerical
solution reaches a maximum. These comparisons clearly
show that the error in the position of the numerical soliton
can be explained by the effects of the truncation error.

As a by-product of the study of this scheme, we have
found that a simple modification can be made, which wilt
increase the accuracy of the resulting simulation. Namely,
we first rewrite Eq. (16) as

t, + Ount, + Uy

+ sz{zut u.rx + uu.rxx + %uxxx_\‘x} = 0' (49)
This equation is then simulated by a scheme consisting of
the original scheme (3 )}-(6) plus finite diflerences for u,, and
U.seer, Which are accurate to O(4x?). In implementing such
a scheme, we have found that the errors in the soliton

4 -—
454 ® gx=050 — Thecretical -
*  dx=0.25 X dx=0.125
3 - -
=
S 251 =u-m
E
= 2 - L]
5
g 157 =
i E - pd 3
* £
0.51 - * B
= M
on =R : T T . T .

a 2 4 & 8 10 12 14 16 18 20
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FIG. 2. Comparison of the numerical and theoretical corrections to

the soliton position for =1, and for the three values 4x =0.375, 0.25,
0.125.
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amplitude and position are of order Ax*, as predicted by the
theory. This is a further indication of the validity of the
using perturbation to study these effects.

SUMMARY

In this paper we have studied the shift in the position of
the soliton in the Zabusky—Kruskal scheme. We have
shown that the numerically induced phase shift can be
predicted by perturbation theory.

This had been accomplished by keeping the leading order
fintte difference errors in the original finite difference equa-
tion, leading to a perturbed KdV equation. By studying this
perturbed KdV equation we were able to obtain the leading
order effects of the truncation error on the propagation of
the soliton. We have found that the ZK scheme will induce
a shift 1n the position of the soliton. As a by-product,
we have suggested a simple modification of the Zabusky—
Kruskal scheme, which can be implemented in about the
same amount of time, but greatly reducing the errors in the
amplitude and position of the soliton,

We have studied other finite difference schemes for
numerically integrating both the KdV and nonlincar
Schrédinger equations. Again we predict that the effects of
the truncation error on the evolution of solitons can be
found using singular perturbation theory. These investiga-
tions will be reported in future papers. Finally, it may also
be possible that a more detailed study of the corrections to
the perturbed KdV equation, which are induced by the
numerical scheme, may be useful in the study of the linear
stability of such schemes. We are currently looking into this
problem and will report our findings at a later time.

APPENDIX A: PERTURBATION BASIS
FOR A SINGLE SOLITON

In order to carry out the perturbation analysis presented
in this paper, we need the following specific forms for
complete set of basis states and their adjoints:

o~ Ziein = Bidt
(ir —m?

% [1? tanh® ¢ + 2iAn tanh ¢ — A2}

D(x, ;)=

(A.1)

1
D, (x, t)=ze“”3‘ sech? ¢ (A.2)
Ay(x, 1) = -%em[w +4n*t)sech? ¢ +tanh 6]  (A.3)
2 ezi.w/n + Bidndy
DA, £ A) =
R R
[ —#° tanh® ¢ + 2iiy” tanh? ¢
+ (2427 +#*) tanh ¢ — i(A* + in?) ] (A4)
Pl =— g— e ~* sech? § tanh ¢ (A.5)
Af =2ie 3"
x [sech? ¢ — (¢ + 4n°t) sech” ¢ tanh ¢] {A.6)
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